Как подключить фотореле к светильнику легко и быстро
Несмотря на кажущееся разнообразие представленных на рынке моделей фотореле, принцип действия у них во многом схож. Главным узлом в них является фоточувствительный элемент, способный изменять свои электропроводящие свойства в зависимости от интенсивности падающего на него светового потока. Чаще всего в качестве фотоэлементов выступают либо фотодиоды, либо фототранзисторы. Фотоэлемент подключается к управляющей плате, основное назначение которой – контроль параметров светочувствительного устройства. Как только уровень освещения изменится и из-за этого поменяются параметры фотоэлемента, управляющая плата подает напряжение на исполнительный механизм. В качестве последнего обычно выступают реле, позволяющие замыкать и размыкать провода цепи электроснабжения уличного освещения.
В каждом фотореле имеются также возможность регулирования порога срабатывания. Осуществляется данная настройка изменением сопротивления переменного резистора, включенного в цепи управляющей платы.
Современные модели также обладают способностью изменять время задержки срабатываний на включение и отключение, реализованной посредством таймеров. В некоторых образцах имеются и датчики движения, позволяющих включать уличное освещение только в тех случаях, когда напротив места установки фотореле наблюдается какое-либо движение.
В паспорте любого фотореле в обязательном порядке приводятся основные его характеристики. Поэтому для безошибочного выбора стоит обращать на каждый пункт, среди которых важнейшее значение имеют следующие. Напряжение питания. Чаще всего это 220 В при 50 Гц. Использовать для уличного освещения варианты с напряжением питания 12 В или 24 В возможно, это не всегда рационально из-за необходимости покупать дополнительно, где-то размещать и соответствующим образом защищать блоки питания. Максимальный коммутируемый ток. Данный параметр приобретает значение лишь в том случае, когда планируется использовать прибор для управления большим количеством светильников.
Основные типы устройств для включния уличного освещения
Для систем уличного освещения чаще всего используются фотореле следующих типов: С фотоэлементом внутри корпуса. Такие фотореле очень удобны для полной автоматизации уличного освещения. имеют полностью герметичный корпус с прозрачной частью напротив фотоэлемента; С внутренним фотоэлементом и таймером. Присутствие таймера позволяет автоматически отключать освещение не только с наступлением рассвета, но и по прошествии заданного временного интервала. В зависимости от модели таймера существуют фотореле с возможностью программирования на сутки, неделю и так вплоть до года. Это весьма удобно, т.к. можно отдельно задавать алгоритм работы уличного освещения для будних и выходных дней, а также имитировать присутствие жильцов в случае их отъезда; С выносным фотоэлементом.
Схема подключения и порядок установки
Существует две простых схемы подключения, зависящих от конструкции устанавливаемых модулей. Под особенностями конструкции здесь понимается наличие у прибора либо трех выводов,либо двух (или кратного двум количества, как это делается у моделей, допускающих подключение нескольких фонарей, ламп или прожекторов непосредственно к корпусу фотореле). Как подключить фотореле с тремя выводами к освещению
В этом случае на корпусе устройства будет иметься три вывода, представленных проводами красного, синего и коричневого цвета. Подключение должно осуществляться следующим образом: коричневый провод подсоединяется к вводу фазы в монтажной коробке; синий – к нулевому проводу все в той же монтажной коробке. К этой же клемме будет подключен и нулевой провод, идущий к лампе; красный – к той клемме в монтажной коробке, с которой будет выводиться фаза на осветительный прибор.
Подключение устройств с двумя выводами
ввод фазы подключается к соответствующей клемме на корпусе фотореле; аналогичным образом подключается нулевой провод; осветительные приборы подключаются к соответствующим выходным клеммам для фазы и нуля. Если на выходе фотореле лишь только одна пара контактных клемм, то и в этом случае существует возможность управлять сразу несколькими лампами. Для этого достаточно подключить их к выходу фотореле параллельным способом. Кроме того, существуют модели фотореле, предназначенные для эксплуатации в сетях с заземлением. Отличаются они лишь наличием дополнительных клемм, куда и подключаются заземляющие провода. Однако при использовании современных осветительных приборов с тремя выводами и при наличии соответствующей электросети, вполне возможно применять и фотореле без ввода заземления.
Как монтаж прибора зависит тот его конструкции
герметичные модели закрепляются с помощью монтажного кронштейна, входящего в комплект поставки; фотореле, предназначенные для монтажа в помещении или защитном кожухе, закрепляются винтами посредством отверстий в корпусе устройства. Выносной датчик в этом случае крепится на улице в подходящем месте. При выборе места для установки фотореле или фотоэлемента придерживаются следующих правил: монтируются они на солнечном месте; поблизости не должно находиться ни навесов, ни высоких стен или заборов, которые могут набросить тень на прибор и спровоцировать ложное срабатывание. Последнее правило справедливо и относительно деревьев.
Если установка фотореле производится зимой, то с наступлением теплого времени года распустившаяся листва способна создать мешающее нормальной работе затенение.
Выгода от использования автоматических выключателей данного типа Установка фотореле в качестве управляющего устройства для систем выгодна со всех точек зрения. Во-первых, снимается необходимость самостоятельного контроля за работой освещения. Во-вторых, за счет уменьшения времени работы ламп достигается экономия электроэнергии. В-третьих, система освещения обретет способность выполнять некоторые охранные функции, включая свет даже при отсутствии хозяев дома. Наконец, установка фотореле представляет собой процесс, мало чем отличается от монтажа прочих электроприборов. Поэтому подобное дооснащение можно выполнить собственными руками, не прибегая к помощи высокооплачиваемых специалистов-электриков.
Схема подключения фотореле для уличного освещения своими руками
Сегодня речь пойдет об устройстве для автоматического включения/выключения осветительных приборов. Официальное его название – фотореле для уличного освещения. Оно значительно упрощает эксплуатацию источников света, создавая тем самым дополнительный комфорт жильцам. Мы рассмотрим самые популярные вопросы об этом приспособлении и узнаем, стоит ли тратиться на подобное оборудование и можно ли правильно своими руками подключить такое устройство.
Что такое фотореле и как оно работает
Люди с давних пор стремятся к автоматизации как на работе, так и в быту. А фотореле – это логическое усовершенствование (разновидность) обычного механического переключателя, иначе называемого сумеречный выключатель или светореле.
Оно служит для автоматического управления электрическими цепями различных источников света, в зависимости от интенсивности наружного освещения. Действующими элементами устройства являются:
- Датчик света. Его фотоэлемент реагирует на изменение уровня освещенности и передает сигнал на реле.
- Реле. Получает информацию от датчика и в соответствии с выставленными параметрами управляет (замыкает/размыкает) электроцепью светильника.
Вот и весь принцип работы фотореле. С помощью специального регулятора на корпусе можно выставлять порог срабатывания прибора. Так можно добиться более или менее раннего включения/отключения света в зависимости от ваших потребностей.
Сфера применения
Использование фотореле не ограничивается лишь уличным освещением. Проявив немного фантазии, его можно применять и в других местах, вот некоторые примеры:
- Гараж. Очень удобно, когда, открывая снаружи ворота гаража, свет будет зажигаться автоматически и не нужно на ощупь искать выключатель. Правда это больше актуально в городских гаражах, где свет снаружи горит постоянно. Для загородных домов такая схема будет работать только днем.
- Управление поливом. Еще одно интересное применение фотореле – это активация капельного орошения в ночное время. Отличное решение для дачных участков и частных домов, которое значительно сэкономит ваше время в дневные часы. Будь то лужайка с газоном или грядки, за ночь все будет хорошенько увлажнено без вашего участия. Но тут нужно следить за погодой и отключать систему в дождливые дни.
В последнее время все популярнее становится система под названием – «Умный дом», где царит полная автоматизация. Так вот, фотореле занимает в ней не последнее место, используясь в совокупности с датчиками движения и другими «умными» приспособлениями.
Разновидности
По типу конструкции фотореле для уличного освещения делятся на два вида:
- У первого все составляющие части находятся в одном корпусе. С одной стороны, это довольно удобно, закрепил его рядом с нужным светильником, подключил и готово. С другой стороны, устройство получается более громоздким, что не всегда удобно. Зато не нужно тянуть провода до распределительного щита.
Фотореле фр-601 и фр-602
- У этих устройств выносной фотоэлемент располагается снаружи, а само реле крепится в щитке на дин-рейку. Такое исполнение надежно защищает устройство от повреждения, атмосферных осадков и т. п, а небольшой датчик будет менее заметен.
Реле с выносным фотодатчиком для установки в щитке
Приборы типа ФР-601 или ФР-602 имеют регуляторы в нижней части корпуса и обозначаются «+» и «—». У реле с выносными датчиками такие регуляторы расположены на внутренней части фотореле, которая располагается в распределительном щите. При повороте в сторону минуса, чувствительность датчика снижается и реле срабатывает только при сильной темноте, а подкручивая в плюс, наоборот, когда еще достаточно светло.
Наиболее популярные и надежные производители фотореле: ФР, ИЭК, LXP, CSM. Они довольно неприхотливы в эксплуатации и обслуживании.
Помимо обычных фотореле с регулятором, есть также устройства сдатчиком движения. То есть даже после того, как стемнело свет будет выключен до тех пор, пока кто-нибудь не подойдет к датчику. Это может значительно экономить электроэнергию, потому ночью передвижение людей обычно минимально.
Пример фотореле с датчиком движения и лампой ДРЛ
Самые навороченные модели оснащаются таймерами, которые можно запрограммировать на разный режим работы. Принцип их действия простой – летом темнеет намного позже, чем зимой, поэтому такие приборы регулируются на каждый промежуток времени отдельно, вплоть до годового цикла.
Фотореле фр-136 с таймером
Подбираем параметры устройства
Прежде чем купить фотореле, нужно определиться с техническими характеристиками прибора:
- На какое напряжение оно рассчитано. В большинстве случаев это 220 вольт, импортные модели могут иметь требование на 110 или 127 В. Встречаются приборы на 12 и 24 В (чтобы подключить такие к обычной сети понадобится блок питания). Загляните в щиток, чтобы узнать напряжение вашей сети.
- Значение максимального тока нагрузки. Чаще всего этот параметр имеет диапазон от 5 до 16 А. Он выбирается исходя из количества и мощности подключаемых через фотореле источников света.
- Диапазон срабатывания датчика. В стандартном исполнении приборы имеют границы от 5 до 50 Лк (люкс – единица измерения освещенности). Модели подороже обладают более точной регулировкой.
- Потребление мощности устройства в покое (от 0,1 до 1 Вт) и при срабатывании (от 2 до 10 Вт).
- Интервал времени (от 15 до 30 сек.) при случайном затемнении фотоэлемента. Если на датчик ненадолго попадет сильная тень или свет фар, это предотвратит ложное срабатывание.
- Степень защиты корпуса устройства от внешних факторов. Для уличного освещения обычно выбирают с индексом – IP 65 или IP 44, маркировка IP 40 говорит о том, что фотореле можно использовать под открытым небом только с защитным кожухом.
- Максимально допустимая температура наружного воздуха для нормальной работы фотореле, этот диапазон составляет от -20 до +50 ⁰С.
- Размеры устройства выбирают в зависимости от месторасположения прибора, габаритов щитка. Нужна ли компактная внешняя часть или это не так важно, все подбирается индивидуально.
Установка фотореле
Перед монтажом системы под управлением фотодатчика следует знать некоторые детали процесса:
- Выбирая место установки фотореле для уличного освещения учитывайте, чтобы свет от источника не попадал на фотоэлемент.
- Избегайте мест установки с агрессивной средой (химические и легковоспламеняющиеся, горючие материалы).
- Не допускается монтаж устройства «вверх ногами». То есть основание должно быть направлено вниз, во избежание попадания воды, пыли и т. п.
- Убедитесь, что технические характеристики устройства соответствуют параметрам вашей электросети.
Схема подключения
Чтобы своими руками произвести подключение фотореле вы можете обратиться к следующей схеме либо изучить документацию к прибору. В ней или на обратной стороне устройства обязательно должно быть схематичное изображение подключения.
Схема подключения фотореле
Это самая простая схема, согласно которой правильно собрать электроцепь самостоятельно не составит труда даже неопытному человеку. Расцветка выходящих проводов может быть любой, нулевой кабель чаще всего бывает синего цвета, фазный черного или коричневого, а красный – питающий, на лампу. Все соединения проводов рекомендуется производить в распределительной (монтажной) коробке (см. фото ниже), используя специальные зажимы или клемники.
На следующей схеме показано, как правильно подключить фотореле для уличного освещения с датчиком движения. На данной схеме дополнительно присутствует провод заземления (зеленый), выходящий из щита с нулевым и фазным. Датчик движения просто является дополнительным звеном, в цепи разрыва фазы.
Устанавливая датчик движения на улице, учитывайте те же условия, что и для монтажа фотореле
Если ваш выбор пал на фотореле для уличного освещения с выносным датчиком, то предлагаем ознакомиться со схемой его подключения:
Схема фотореле для уличного освещения с выносным датчиком
Блок реле (1) устанавливается в распределительный щит, фотоэлемент (2) крепится снаружи, в месте, исключающем попадание лучей светильника (3) и по возможности затеняющих предметов.
Еще один очень частый вопрос читателей – это подключение фотореле к фонарям с лампами ДРЛ (дуговая ртутная лампа).
Чаще всего такие лампочки устанавливаются в следующие осветительные приборы:
Светильники для ламп ДРЛ
Это могут быть приборы как для освещения городских улиц, так и приусадебных участков (фонари, прожекторы и т. п.). ДРЛ гораздо экономичнее чем лампы накаливания, поэтому их применение для уличного освещения более оправданно, особенно в паре с датчиком движения.
Чтобы правильно подключить фотореле к светильнику с лампой ДРЛ, нужно добавить в схему дроссель или ПРА (пускорегулирующий аппарат) либо приобрести светильник со встроенным пускателем.
Схема подключения светильника с лампой ДРЛ
Немного о ценах
Стоимость фотореле на самом деле не так высока. Вот пример ценников на самые популярные модели:
- ФР-601 от 200 до 300 р.
- ФР-602от 300 до 400 р.
- LXP-01 от 240 р.
- LXP-02 от 350 р.
- LXP-03 от 420 р.
Цены на датчики движения:
- IEK от 400 р.
- CAMELION от 350 р.
- ТДМ от 400 р.
- REV RITTER от 550 р.
Это средние цены по России, для разных регионов стоимость может несколько варьироваться. Если вы задались автоматизацией своего жилища, то задумку можно легко воплотить и не слишком разориться при этом.
Вывод
Мы осветили часто встречающиеся вопросы о выборе, принципе действия, разновидностях, схемах подключения и ценах на фотореле. Мы также выяснили, что сделать все это своими руками довольно просто любому человеку, было бы желание и средства. А уж если вы воплотите свою затею в жизнь, то ваши близкие и гости по достоинству оценят всю прелесть современных благ цивилизации.
Как подключить фотореле для уличного освещения к фонарю
Контролировать освещение на улице удобно с помощью фотореле. Устройство практично и имеет простую схему подключения. При этом уличные осветительные приборы будут работать в необходимом режиме.
Фотореле и принцип его работы
Эффективный прибор позволяет контролировать затраты энергии, управлять освещением по необходимому режиму. Фотореле используют для своевременного включения и отключения уличных фонарей, что актуально для частных домов. Для этого в приборе предусмотрен датчик, чувствительный к свету. Элемент соединён с питательной цепью. При попадании лучей света датчик становится изолятором, а тёмное время суток прибор проводит электроэнергию к устройству освещения. Так работает фотореле, отключая фонари при дневном свете и включая их при отсутствии солнечных лучей.
Компактное фотореле обладает простой конструкцией
Освещение: применение фотореле
Прибор контроля освещения используют в частных домах, размещая на фонарях вдоль дорожек или возле входной двери. В парке, загородном большом участке и других просторных территориях также применяют фотореле. Прибор практичен для освещения автостоянок, дворов, рекламных конструкций и зоны видимости видеокамер наружного наблюдения. Во всех случаях создаётся автоматизированная система, которая включает свет при наступлении темноты. Это позволяет экономить энергоресурсы и обеспечивает комфорт нужных зон.
Датчик движения может дополнять фотореле
Характеристики фотореле
При выборе устройства для управления освещением учитывают его характеристики. Производители выпускают обширный ассортимент приборов, отличающихся внешним видом, характеристиками, номинальным напряжением питания и другими параметрами. Поэтому при выборе стоит обратить внимание на следующие особенности фотореле:
- вес и размеры устройства;
- температурные ограничения при эксплуатации;
- сектор срабатывания;
- мощность и уровень потребления энергии;
- частота сети для работы;
- номинальное напряжение для питания.
Приборы также разделяются по типу коммутируемых светильников. Простые модели часто предназначены для работы с обычными лампами накаливания или галогенными устройствами. Для других вариантов ламп следует выбирать фотореле, мощность и характеристики которого соответствуют параметрам источника света.
Виды устройств
Фотореле широко используют в разных областях и в зависимости от этого приборы разделяют на несколько видов. Для частного применения удобно фотореле, имеющее встроенный фотоэлемент. Они представляют собой единый блок, который закрепляется на улице. А также надёжны и более функциональны модели, в которых присутствуют встроенный фотоэлемент и таймер. В таком случае есть возможность управления освещением по заданному режиму времени.
Прибор с выносным элементом прост в эксплуатации
Практичные устройства могут иметь возможность управления порогом срабатывания. Модели с выносным элементом для контроля освещения отличаются удобным управление. Эти виды являются основными, но существуют и варианты, предназначенные для работы в суровых и сложных условиях, например, на севере.
Приборы, в конструкцию которых входит датчик движения/присутствия, позволяют экономить энергию. Фотореле включает свет при приближении объекта, а при длительном отсутствии движения, освещение выключается.
Производители
Качественные датчики освещённости выпускают производители во многих странах мира. При выборе стоит учесть, что в устройства отличаются по номинальному напряжению питания. Оптимальны приборы, которые подключаются в сети в 220 в.
Основными являются такие бренды, как:
- «Рубеж»;
- EKF;
- TDM;
- IEK;
- HOROZ;
- Theben.
Стоимость устройств определяется типом чувствительного элемента, который входит в конструкцию. Именно эта деталь наиболее ценная и обеспечивает качественную работу прибора. На стоимость изделий также влияют габариты, характеристики и марка производителя.
Фотореле IEK ФР-601, 602, 606, 603: сравнение и особенности
Производитель IEK выпускает обширный ассортимент датчиков освещённости, которые отличаются внешним видом, характеристиками и другими параметрами. Сравнить востребованные модели легко с помощью данных, приведённых в таблице.
Тип фотореле | Особенности |
ФР-601 | Для эксплуатации в однофазных электрических сетях переменного тока напряжением 230 В частотой 50 Гц и по характеристикам соответствует ГОСТ Р 51324.2.1. Защита от пыли и влаги, максимальная нагрузка и мощность лампы 2200 Вт, температурные условия эксплуатации от –25 до +40 °С, степень защиты IP 44, |
ФР-602 | Для эксплуатации в однофазных электрических сетях переменного тока напряжением 230 В частотой 50 Гц, соответствует ГОСТ Р 51324.2.1. Макс. нагрузка и мощность лампы 4400 Вт, диапазон рабочих температур от –25 до +40 °С. степень защиты IP 44. |
ФР-603 | Для автоматического включения/отключения источников света. Присутствует встроенный фотоэлемент, а коммутирующая нагрузку деталь представлена в виде электромеханического реле. Защита IP44, входящее напряжение 220 – 240 В. |
ФР-606 | Для автоматического управления уличным освещением в зависимости от естественной освещённости. Пластиковый корпус, электромеханическое реле, температурный режим эксплуатации от — 40 до + 50, напряжение 220~240 В. Могут использоваться датчики и таймеры. |
Модели фотореле отличаются формой и внешним видом. Эти четыре варианты оптимальны для управления освещением на улице и отличаются простой схемой подключения. Приборы устанавливают снаружи, но есть и модели для крепления внутри. При этом на улице располагается лишь датчик.
Как подключить устройство к уличному фонарю: схемы и принципы
При подключении простого устройства нужно ознакомиться с его конструкцией. Главным элементом является фотодиод, который может находиться снаружи или внутри корпуса. В первом случае датчик монтируют на улице, а электронный блок подключают на электрическом щите в помещении. При внутреннем расположении чувствительной детали прибор монтируют на улице.
Прибор имеет небольшие размеры и простое крепление
Знание конструктивных особенностей устройства позволяет подключить его к фонарю максимально эффективно. Поэтому важно определить тип фотореле, приобрести качественный прибор, подобрать схему, а затем приступать к подключению датчика.
Фотореле на схеме
Правильная схема подключения значительно облегчает самостоятельную установку прибора. На электрической схеме фотодиод представлен в виде условного графического обозначения, представляющего собой треугольник на оси симметрии с направленными сверху вниз стрелками. На простых схемах прибор может обозначаться в виде круга или прямоугольника с надписью «ФР».
Стрелки на схеме символизируют отражение света
Подключение
Кронштейн с прибором монтируют в затенённом месте. Листва деревьев, навесы, осадки не должны влиять на работу устройства. После определения места расположения нужно узнать количество светильников, для которых необходимо управление. На один источник света монтируется одно фотореле. Если же используется большое количество фонарей, то лучше всего применить контроллер. Он получает сигнал от фотодатчика и позволяет управлять несколькими светильниками одновременно.
Схема подключения к одной лампе очень проста
Конструкция прибора может включать в себя клеммы, что упрощает подключение. Они необходимы для зажима проводов. Кабель каждого цвета соединяют с соответствующим проводом лампы и цепи питания. Если клеммы отсутствуют, то следует установить распределительную коробку. Корпус устройства должен быть защищён от влаги и осадков. Известные производители указывают на упаковке или в инструкции схему подключения элемента.
Сборка и подключение фотореле своими руками
Создать простой прибор для управления освещением просто своими руками. В зависимости от необходимого уровня функциональности и навыков можно использовать как простые, так и сложные схемы. В любом случае нужно использовать качественные детали и предусмотреть защиту элемента от климатических воздействий.
Компоненты
Для сборки нужно подготовить все необходимые детали. Простой вариант фотореле включает в себя такие компоненты, как:
- фоторезистор;
- прибор Q6004LT;
- резистор обычного типа.
Схема соединения и подключения устройства проста и включает в себя минимум деталей. Аппарат при этом получает питание от сети 220 В, а принцип действия заключается в постепенном увеличении амплитуды напряжения до 40 В. При достижении этой отметки срабатывает фотореле и загорается свет.
Схема
Сборка простого датчика освещённости предполагает определение уровня мощности и характеристик прибора. Предварительно составляют схему соединений и подключения к лампе. Для использования одного фотореле для нескольких фонарей нужно применить контроллер.
Простая схема требует минимальных знаний в области электричества
Сборка и монтаж
В этой схеме отсутствует блок питания, что делает процесс сборки простым. Уровень мощности может быть увеличен за счёт использования прибора, обладающего более высокими характеристиками. Все компоненты соединяются с помощью кабеля, а для настройки используется резистор с сопротивлением в 40 кОм.
Применение мощного прибора Q6004LT даёт возможность подключать к собранному устройству нагрузку с мощностью до 500 Вт. А использование в схеме дополнительного радиатора позволит увеличить мощность до 750 Вт. В дальнейшем можно применять квадрак, который будет обладать рабочими токами 6, 8, 10 или 15 А.
Эксплуатация освещения
В процессе эксплуатации системы освещения, в которой присутствует фотореле, важно обеспечить надёжность корпуса устройства. В противном случае осадки приведут прибор в негодность, а управление освещением будет невозможно. Поэтому важно выбирать качественные фотореле с надёжным корпусом, защищающих электрические элементы от климатических влияний.
Фотореле позволяет создать красивую подсветку
При установке обязательно соблюдать правила работы с электроприборами. Это позволяет избежать травм. В результате легко создать надёжную и экономичную систему освещения на улице.
Для настройки датчика освещённости используют специальный регулятор, расположенный в нижней части прибора. Среднее положение оптимально, но можно и увеличить эффективность. Настройка зависит от личных предпочтений. Например, при максимальном показателе фотореле сработает в начале захода солнца и включится свет.
Неисправности фотореле и их устранение
Правильно подобранный датчик обеспечит комфортное управление освещением, но иногда возникают и неисправности. Одной из распространённых является ситуация, когда свет на улице включается в дневное время суток. Возможная причина скрывается в том, что какие-либо объекты мешают солнечному свету, то создавая тень, то обеспечивая поток света.
Фотореле устанавливается над лампой
Для корректной работы следует установить датчик над прибором освещения. Свет от фонаря не должен попадать на корпус устройства. Попадание воды внутри датчика может спровоцировать самые разные неполадки, например, поломку, мигание элемента. В таком случае нужно заменить прибор на новый, но обязательно учесть надёжность и герметичность корпуса, подобрать месторасположения.
Преимущества и недостатки
Фотореле практично для различных объектов, требующих контроля освещения. Прибор позволяет экономить энергозатраты, в нужное время отключая лампы. Это является главным преимуществом элемента. А также стоит учесть и лёгкий монтаж, возможность подключения к одному датчику нескольких фонарей и простую эксплуатацию. Наличие таймера и датчика движения делает устройство более функциональным. В процессе использования датчик не требует постоянного внимания. Для получения всех преимуществ важно правильно установить фотореле и выбрать качественный элемент.
Прибор с таймером очень удобен
Фотореле является элементов электрической цепи освещения на улице. Поэтому правильный монтаж обязателен при подключении. В противном случае возникнут сбои в работе, поломки и неисправности, которые приведут к дополнительным расходам. И также важно подобрать фотодатчик, соответствующий характеристикам ламп и необходимому уровню функциональности.
Видеорекомендации позволяют более эффективно освоить особенности выбора и работы фотореле. В следующем видео представлен простой прибор, который эффективен для частного применения.
Видео: принцип выбора и работа фотореле
Управление освещением с помощью фотореле — эффективный способ снизить энергозатраты на подсветку улицы или других объектов. Датчик, параметры которого соответствуют потребностям, прост в монтаже и отличается рядом преимуществ. А знание принципа работы устройства позволит совершить правильный выбор.
Оцените статью: Поделитесь с друзьями!устройство, принцип действия, инструкция, выбор
Сегодня рассмотрим, что такое фотореле. Подключить его проще простого, попытаемся дать пару советов. Посмотрим, как подключить фотореле, и что способно помешать его правильной работе.
Устройство и принцип действия фотореле
Человеку, разбирающемуся в схемах, после прочтения подраздела объяснять, как подключается фотореле ФР 601, уже не потребуется. Основные конструктивные части любого уличного фотореле, призванного контролировать уровень придомовой освещённости:
- Блок питания стоит прямо на входе. Указанная деталь придаёт фотореле необходимый вес. Датчик величиной с пятикопеечную монетку. Внутри блок питания фотореле не импульсный, а простейший. Под кожухом фотореле притаился солидных размеров трансформатор. Он переваривает напряжение от сети 220 В в форму, пригодную для питания фотодиода. Все устройство – блок питания для небольшого куска полупроводника размером с ноготок. Теперь понятно, зачем в фотореле нулевой провод: для питания первичной обмотки трансформатора. Это не единственная причина. Трансформатор фотореле, понятное дело, понижающий. С вторичной обмотки снимается напряжение, необходимое для питания фотодиода.
Фотореле
- Выпрямитель в фотореле однополупериодный или двухполупериодный. В первом случае львиная доля напряжения уходит напрасно. Во втором – масса прибора возрастает, равно как объем. Причём фотодиод нетребовательный. Много мощности фотореле не понадобится. Выпрямитель часто собран на единственном диоде (без приставки фото).
- Фильтры в фотореле обычно сглаживают входные пульсации напряжения 220 В. Присутствуют по простой причине: в противном случае трансформатор начнёт сильно греться. Острые пики представляют опасность для индуктивных сопротивлений (первичная обмотка трансформатора). Вывода на заземление у фотореле нет, внутри, вероятно, стоит подобие RC цепочки (интегратор), отсекающий все выше граничной частоты. Второй фильтр выходной. В его задачи входит сглаживание пульсаций, после выпрямления напряжения на диоде.
- Фотодиод (датчик освещённости) контролирует работу транзисторного или тиристорного ключа. Через указанное место на базу (управляющий электрод) подаётся нужное напряжение. Вентиль распахивается и начинает питать лампочки напряжением 220 В. Как вариант на замену тиристора допустимо применять реле. Его затвором управляет фотодиод. Реле без необходимости формирования питания дорогое, и стоимость прибора вырастет до небывалого размера, провоцируя падение спроса на продукцию.
- Датчик представляет собой кусок из двух полупроводников разного типа проводимости (электронный-n и дырочный-p), на стыке присутствует участок с маленьким окошечком, куда планируется пропускать фотоны извне. За счёт действия квантов света p-n переход открывается, течёт ток. Это вызывает открытие реле (ключа, тиристора и пр.).
Представлена вся схема. Добавим, что «земля» иногда нужна для правильной работы силовых элементов (задать рабочую точку нелинейного элемента).
Как ведётся подключение фотореле
Собственно, на картинке приведён пример, как подключать фотореле. Добавим, что, как правило, присутствует три провода, исходящие из корпуса. Назначение:
Схема подключение реле
- Красный – фаза, уходящая на лампы освещения.
- Чёрный – фаза, приходящая от источника питания 220 В.
- Зелёный – земля.
Набор проводов фотореле может состоять и из прочих цветов. К примеру, вместо красного коричневый. Придётся почитать инструкцию на фотореле, допустимо попробовать незамысловатый метод: первичная обмотка трансформатора должна без сложностей звониться. Реле может быть нормально разомкнутым, не пропускать ток. Сопротивление первичной обмотки не будет нулевым. Даже для постоянного тока мультиметра. Проведите измерение, и удастся отыскать землю. Что касается фазы, если подать напряжение не туда (реле нормально замкнутое), хватает прикрывания прибор крышкой, чтобы цепь перешла в непонятное состояние. Рекомендуем в случае отсутствия инструкции просто снять крышку и посмотреть, куда идут провода. Фазный делится надвое: первая ветвь пойдёт минуя ключ (реле, тиристор) на выход, вторая послужит для питания трансформатора. Питание подайте на конец, не отделенный от трансформатора ключом. Оставшийся провод – земля.
Посмотрите на рисунок, где авторы изобразили схему подключения фотореле. Все они однотипны, смело берите на вооружение. Выдержан цвет проводов из нашего примера. На практике гамма порой отличается, но по описанию становится понятно назначение.
Как выбрать фотореле
Обратите внимание, что у каждого приспособления выделяется область применимости. Для нашего случая это пропускная мощность. Фотореле не способно пропустить бесконечно большой ток, расплавится силовой элемент. Важно понять, что иногда исключительно ключом не обойдёшься. Оригинальный выход – замена разрядных и обычных ламп на светодиодные либо энергосберегающие. Подобные приборы потребляют энергии на порядок меньше, а значит, допустимо поставить количеством в 10 раз больше.
Срок службы светодиодных ламп может достигать 30000 часов. Магазин Чип&Дип даёт два года гарантии на продаваемый товар указанного толка. Нитевидные светодиоды сделаны для имитации обычных ламп накала, способны светить годами. При этом не боятся тряски, экономичны и сравнительно дешёвые. Соседи не поймут, что произошла замена.
Когда формируется схема подключения фотореле для уличного освещения, требуется продумать вопросы питания и мощности. Согласитесь, неудобно ставить ряд управляющих ключей. Они портят внешний вид экстерьера, не несут смысловой нагрузки, разве что выделить несколько контуров, предназначенных включаться и выключаться в разное время. Любой собственник частного домовладения знает факты:
- Дом в период разработки конструкции обзаводится электрическим проектом. Нельзя брать и что-то менять без сонма согласовательных работ. Следовательно, чем меньше стоит фотореле и влияет на схему, тем лучше. Тогда смена лампочек накала или разрядных на светодиодные или энергосберегающие смотрится уместно. Главное, что пропускаемый ток уменьшится, удастся сэкономить на реле, а также обойтись единственным на все поместье.
- Важной частью считается квота энергии. По законам РФ собственник имеет право на определённую долю энергии. Это называется квотой. Если свою долю не выбрать – что учитывается уже в проекте электрификации – потом за положенное придётся (!) платить. Собственную квоту лучше знать заранее. А превышать нельзя опасаясь прогрессирующего штрафа. Следовательно, выгодно забрать ровно столько, сколько даёт закон. Сбережение энергии за счёт внешнего освещения позволит чуть больше приборов разместить внутри здания.
Проверка действия фотореле
- Энергетический проект изготавливается организацией с лицензией СРО. По исполнению придерживайтесь списка работ, требующих разрешения. Закон ежегодно меняется, таблицу со строительными операциями, требующими наличия лицензии, ищите самостоятельно. Доработать проект и вставить туда фотореле посложнее, чем просто вкрутить лампочку. Чтобы не вступить в конфликт с законом, правовые вопросы выясняются отдельно.
Обратите внимание при установке фотореле, что в место будущей дислокации должен беспрепятственно проникать свет. Для подстройки уровня включения с нижней стороны прибора устанавливается специальный винт. Регулируя его положение, возможно беспрепятственно настроить прибор на нужное время. Разумеется, многое зависит от погоды. Если утро пасмурное, свет проработает дольше. И наоборот – когда рассвет солнечный, освещение выключится раньше.
Если это не нравится или просто не требуется, потребуется последовательно включить реле времени (таймер). Современные версии отличаются возможностью программировать расписание по дням недели и выбирать варианты. Иногда выручит датчик движения. Это полезно в темных галереях, где неэффективно ставить выключатели – сложно найти. Датчик определит, что приближается человек, и выполнит нужную работу.
Схема сбора реле
Как сделать и подключить фотореле самостоятельно
Ввиду простоты конструкции люди часто хотят сделать фотореле самостоятельно. Речь сейчас идёт о садоводах (для контроля освещения), автолюбителях и прочих лицах, которым не требуются проект и согласование. Принцип работы фотореле уже описали выше, просто посмотрите на схему. Там приведено реле на 220 В, несложно найти в микроволновой печи или мультиварке. Выбирайте любое, лишь бы напряжения +12 В хватило для срабатывания.
Транзисторы позаимствованы незамысловатые и включены по схеме с общим эмиттером. Это ключи, отпираемые положительным напряжением. Оно не способно поступить на первый каскад (находящийся слева), пока на фотодиод КДФ101А не упадёт достаточный поток фотонов света. Потом ключ просто передаёт потенциал на базу второго в каскаде ключа, подключающего схемную землю на реле. Таким образом, цепь замыкается. А на управляющий электрод силового реле начинает поступать в полной мере 12 В.
Диод, соединённый параллельно с реле, служит для обратного размыкания, когда транзисторы закроются. Особое внимание обратите на экспериментально подбираемый номинал резистора, определяющего режимы работы обоих транзисторов. Требуется просто по вольт-амперной характеристике выбрать правильную точку. Потом посчитать, как должно делиться напряжение. Обратите внимание, питание берётся прямо через реле. Если принципиальная схема не позволяет так сделать, придётся провести провод питания прямо на катод фотодиода, возможно применение другого реле. Иначе схема не заработает.
Кстати, фотореле возможно проверить за считаные минуты при помощи обычного мультиметра. Схема подключения фотореле уличного освещения аналогична описанной выше. А напряжение питания +12 В можно взять из любого блока питания, оказавшегося поблизости (или аккумулятора).
установка фотореле для уличного освещения. Как подключить датчики света? Регулировка освещенности и монтаж к светодиодному прожектору
Каждый вечер мы наблюдаем то, как на городских улицах, где располагаются фонари освещения, они включаются автоматически в какой-то определенный момент. На сегодняшний день фотосенсоры, которые управляют данным процессом, доступны не только коммунальщикам, но и обычным людям, что дает возможность существенно сэкономить на электричестве и не тратить свое время на активацию и отключение света на определенной территории.
Необходимо сказать, что сделать осветительный механизм благодаря фотореле не проблема – достаточно понимать схему подключения датчика света и правила работы с рассматриваемой техникой.
Устройство и принцип работы
Следует сказать, что фотореле для уличного освещения похоже на некий датчик освещенности, что работает благодаря оснащенности специальным фотоэлементом. С использованием именно этой составляющей датчик может оценить осветительный уровень открытого пространства, и при совпадении ряда характеристик осуществляет активацию света в механизме освещения уличного исполнения.
План фотореле не слишком труден и может уместиться в корпус малых размеров, откуда уходят 3 проводника. Они необходимы для подключения гаджета к обычной электросети. Часто они применяются и для активации такой техники в зависимости от необходимого осветительного уровня в настройках. Такой датчик обычно используется для управления наружным вариантом освещения.
Сегодня довольно распространены на рынке модели, которые оснащены специальным регулятором. Его задача – управление работой устройства, а также максимально точная настройка оборудования. Благодаря наличию такой опции, можно добиться точной работы подобного решения в различных ситуациях.
Если регулятор поставить в режим «– », то освещение будет активироваться лишь ночью, а если в режим «+», то уже во время сумерек. Но большинство производителей рекомендует выбирать нечто среднее между режимами, чтобы стабильность работы оборудования такого типа была максимальной.
Отдельно следует заметить, что максимально эффективное управление датчиком невозможно без понимания некоторых параметров:
- диапазон световой чувствительности – от 5 до 50 люкс;
- мощность – 1-3 киловатта;
- максимальная энергонагрузка – 10 ампер.
Кроме того, следует знать, что существует еще несколько категорий фотореле. Их отличие будет в расположении фотоэлемента. По этому критерию они бывают:
- с выносным фотоэлементом;
- со встроенным.
Если говорить о решениях первого типа, то тут конструкция устройства будет состоять из 2 элементов: фотоэлемента, расположенного на открытом воздухе, и выключателя, который следует подсоединить отдельно. Вариант с фотоэлементом встроенного типа получает реле времени и регулятор. Тогда подключение устройства будет осуществляться по простой электросхеме для фотореле.
Упомянутое решение обычно используется в различных сложных осветительных механизмах. Тут будет необходима щитовая схема подключения.
Для любой отдельной модели будет нужна своя схема фотореле, что следует принимать в расчет при дальнейшем приборном подключении.
Еще одним решением подключения будет вариант при помощи таймера. Тогда можно просто поставить датчик на включение либо отключение регулятора. По этой причине активация света будет осуществляться через определенное время, что позволит существенно снизить расходы на электрическую энергию.
Теперь немного скажем о принципе использования подобной системы. Датчик в данном варианте будет работать через специальный фотографический элемент, который можно быть разного типа:
- диод;
- тиристор;
- резистор;
- транзистор;
- симистор.
Каждый из упомянутых типов по-разному реагирует на наличие света:
- диод будет во время облучения потоком света выбрасывать специальный импульс, что имеет прямо пропорциональное значение осветительной интенсивности;
- тиристор при светооблучении будет осуществлять взаимодействие с током постоянного типа;
- резистор меняет величину собственного сопротивления, что станет причиной отключения либо включения света;
- транзистор проводит регулировку при облучении электросигнала светом;
- симисторное решение активирует или деактивирует свет при работе с «+» или «–» составляющей.
Монтаж
Теперь остановимся на том, как соединить фотореле с датчиком движения для освещения и осуществить его установку. Вместе указанные решения дадут возможность активировать источник света еще во время сумеречного периода дня в тот момент, когда в нужной зоне кто-то появится. Если же на территории никого нет, то освещение не загорится, что даст возможность сэкономить электричество и, соответственно, деньги.
Метод монтажа будет зависеть от того, какой защитный вариант и категория крепления выключателя сумеречного вида были приобретены. На сегодня существуют следующие решения по установке:
- уличный либо внутренний вариант применения;
- внешний либо встроенный фотоэлемент;
- с закреплением на рейку типа DIN, на стенку или поверхность горизонтального типа.
Приведем пример монтажа фотореле для освещения улицы с закреплением на стенке. Чтобы осуществить самостоятельный трехфазный монтаж, следует выполнить следующие действия.
- Сначала убираем подачу электричества на щитке ввода и осуществляем проверку, есть ли ток в распределительном ящике, откуда будет вестись кабель.
- Теперь осуществляем протягивание провода питания к области, где установим фотореле. Обычно она располагается рядом с прибором освещения. Лучше всего для подключения выключателя рассматриваемого типа применять 3-жильный провод типа ПВС, что будет довольно надежным.
- Осуществляем зачистку жил от изоляции где-то на сантиметр для последующего подключения в клеммы, после чего делаем в коробке дырки для ввода жил и последующего подключения фотореле к электросети.
- Для улучшения корпусной герметичности, прикрепляем в дырках уплотнители из резины, которые будут предотвращать попадание внутрь пыли и грязи. Оптимально, если такие отверстия расположены снизу, чтобы внутрь также не попала вода.
- Производим подключение фотореле по нужной нам электрической схеме. Сначала фаза ввода идет на разъем с обозначением L, а вводная нейтраль – на N. Для заземления есть специальная клемма винтового типа.
- Отрезаем определенную часть провода, дабы подключить фотореле к лампочке, после чего немного зачищаем изоляцию и подсоединяем на клеммы L и N. Второй проводниковый кончик подводится к светоисточнику и подсоединяется к патронным клеммам. Если корпус проводит ток, то можно обойтись без подключения заземления.
Схема подключения
Теперь поговорим о том, как установить фотореле правильно. Подключить этот элемент может оказаться сложно по ряду причин. Например, электрическая схема размещения осветительных приборов не предусматривает этого, к элементам управления ограничен доступ либо же имеются довольно жесткие требования активации светильников. План подключения фотореле к светодиодному прожектору будет зависеть от особенностей техники, что будет использоваться. Часто она вообще изображается на самом решении.
Стоит отметить, что в техпаспорте всегда можно найти подробную инструкцию. Если она по каким-либо причинам отсутствует или неясна, рассмотрим следующий план подключения. Фотореле получает несколько проводов. Их цвет может быть различным, но обычно они имеют синий, коричневый и красный расцветки. Также они часто имеют буквенные значения: N – нулевой кабель, L – фазный кабель, Load – нагрузочный кабель. Устройство обычно подпитывается при помощи синего провода.
Этот кабель следует подключить к нулю в распределительной коробке, как и нагрузку к лампочке освещения. Фазный кабель подводится к вводу соответствующего типа. Провод красного цвета уходит на фазу, откуда ток идет к осветительному фонарю. Если мощность лампочек, что подсоединяются к фотореле, будет выше показателя его мощности, то нагрузка идет через магнитный пускатель либо контактор, который имеет некое значение мощности.
Если необходимо подключение фотореле с 2 выводами, то фазный ввод замыкается на необходимой клемме на корпусе.
Таким образом, по аналогии подключается нуль. Нагрузка идет к нужным выводам нуля и фазы. Подобное фотореле предназначается для управления лампочкой. Для регулирования работы более чем одной лампы, их следует соединить в цепь параллельного типа и подключить, как говорилось ранее. Если говорить о подключении фотореле с заземлительными клеммами, то у них будет схема подключения, описанная ранее, но разница состоит в том, что здесь будут добавлены провода заземления.
Особенности настройки
Когда установка и последующее подключение были завершены, следует перейти к тому, чтобы настроить, отрегулировать и проверить работу системы. Все несложно по причине того, что в комплекте есть специальный пакет черного цвета, необходимый, чтобы имитировать ночь. А день имитировать необходимости нет, ведь он есть и так.
На корпусе датчика освещения можно увидеть спецрегулятор, что обычно обозначается аббревиатурой LUX – он необходим для подбора осветительной интенсивности, которая станет причиной активации реле. Если же есть желание сэкономить немного электрической энергии, то следует поставить ручку регулятора поворота на минимум. Тогда сигнал об активации будет подаваться лишь тогда, когда на улице максимально темно.
Как правило, регулятор располагается у клемм винтового типа, чуть выше слева. Последнее, что останется сделать для подключения фотореле, – прикрепить крышку защитного типа и активировать электроэнергию на щитке. Когда это будет сделано, можно начинать тестировать устройство.
О том, как подключить и настроить фотореле, смотрите далее.
Схема подключения фотореле
Для автоматизированной работы уличного освещения или других приборов, необходима установка фотореле.
При наступлении сумерек фотореле автоматически подаст питание на осветительные приборы, а с наступлением светлого времени дня отключит его.
Данный прибор может выглядеть по разному, все зависит от производителя и мощности коммутируемой нагрузки. Наиболее распространены фотореле со встроенным датчиком освещённости, но так же попадаются приборы и с выносным датчиком. Применение таких фотореле оправданно в сложных системах с расположением в электрощитах.
Практически в каждом фотореле допускается регулировка порога срабатывания по освещённости, что очень удобно, так как можно отрегулировать включение от начала сумерек до практически полной темноты.
Существуют варианты подключения фотореле через таймер времени. При этом днём в пасмурную погоду фотореле будет отключено. В более сложных таймерах есть возможность программирования не только по времени, но и по дням недели.
Работа наружного освещения становится автоматической после добавления в цепь освещения обычного фотореле. Ниже, для большей наглядности, представлены схемы управления светильником с простым выключателем и с добавленным в цепь фотореле.
Схема включения/выключения освещения выключателем
Схема с добавленным в цепь фотореле
Все фотореле, работающие на улице, имеют класс защиты IP44, это говорит о том, что устройство защищено от брызг воды и попадании частиц больше 1мм. Рабочие температуры, как правило, от -250С до + 450С.
Монтаж и настройка фотореле.
Установка фотореле, как правило, производится недалеко от источника освещения, а при выборе места монтажа следует исключить попадание света от лампы на фотореле. Так же необходимо принять меры по исключению попадания на фотореле листвы, снега и прочего, что может вызвать его ненормальную работу. Если фотореле в последующем будет управлять работой группы светильников, следует уточнить в инструкции максимальную подключаемою нагрузку. При превышении данного параметра в цепь управления следует включить магнитный пускатель.
Наличие выключателя в схеме с фотореле обусловлено возможностью принудительного отключения, например, при замене ламп или планового осмотра.
Использование фотореле для управления уличным освещением полностью автоматизирует эксплуатацию, увеличивая ресурс всей системы. Применение автоматики позволяет экономить электроэнергию, исключая постоянного вмешательства человека в процесс управления освещением.
Материалы, близкие по теме:
Схема подключения фотореле для уличного освещения
С каждым годом количество новых технологий все увеличивается. С помощью некоторых изобретений можно сделать пребывание в доме более комфортным и удобным. Немалой популярностью сегодня пользуются приборы, которые позволяют автоматизировать некоторые процессы, к примеру, включение света. Чтобы создать такую систему своими руками необходимо фотореле.
Особенно актуальным будет установить такой датчик на улице для создания наружного (уличного) типа освещения. Купив или сделав такой прибор своими руками, вам останется только установить его. Но данную процедуру необходимо провести качественно, чтобы устройство проработало долго в различных климатических условиях улицы.
Для чего нужно
Фотореле представляет собой прибор, в состав которого входит специальный датчик, который считывает уровень освещенности окружающего пространства. Подключив такое устройство в систему наружного освещения, можно автоматизировать включение/выключение света и связать их с уровнем освещенности улицы. Это позволит в разы снизить потребление электроэнергии, добившись включения света только при наличии такой необходимости. Но для этого нужно разобраться с особенностями прибора для его правильного подключения и настройки. Если все сделать правильно, то датчик будет работать только тогда, когда настанет ночь, а когда начнется день – он будет в спящем режиме.
По факту, для подключения такого аппарата необходимо разбираться в следующих моментах:
- что представляет собой данный датчик;
- какой тип фотоэлемента в нем установлен;
- что нужно для его подключения к электрической сети дома.
Рассмотрим каждый пункт более детально.
Особенности устройства
Фотореле имеет вид датчика, который работает благодаря наличию у него фотоэлемента. Через него датчик оценивает уровень освещенности на улице и, при совпадении заданных параметров, активирует включение света в системе уличного типа освещения.
Обратите внимание! При падении света на датчик в день, фотоэлемент становится изолятором, а ночью – проводником.
Регулятор на корпусе
Схема фотореле не очень сложна и умещается в небольшой компактный корпус, из которого выходят три проводника. Они необходимы для подключения прибора к сети питания. Они также могут использоваться для управления включением аппарата в зависимости от выставленного в настойках уровня освещенности.
Такой датчик может использоваться в разных ситуациях. Но наиболее часто он применяется для создания уличного типа освещения.
Сегодня очень распространены модели, которые имеют регулятор. Он используется для управления работой прибора и более точной его настройки. Благодаря регулятору можно добиться правильной работы устройства в каждой заданной ситуации.
Обратите внимание! Регулятор выносится на внешнюю часть корпуса прибора, что упрощает пользование.
Выставляя регулятор на «-», датчик будет включать освещение только ночью, а при установке на «+» — когда только начинает смеркаться. Многие производители рекомендуют устанавливать регулятор на срединное положение. Это обеспечит более стабильную работу устройства.
Для более эффективного управления работой датчика нужно настроить несколько параметров:
- диапазон чувствительности света. Его надлежит выставлять в пределе от 5 до 50 Люкс;
- мощность — от 1 до 3 КВт;
- максимальная нагрузка сети – 10 А.
Также для правильного подключения важно знать, какие виды фотореле бывают. Самое главное отличие таких датчиков заключается в расположении фотоэлемента:
Датчик с выносным фотоэлементом
- датчик со встроенным фотоэлементом. Такие модели могут иметь встроенный регулятор и таймер. В данном случае подключение прибора происходит по обычной схеме. Для подключения подойдет стандартная электрическая схема для фотореле;
- датчик с выносным фотоэлементом. Здесь конструкция устройства состоит из двух частей: фотоэлемент, что выносится на улицу и переключатель, который стоит устанавливать отдельно. Для подключения их между собой нужно использовать кабель.
Обратите внимание! Подобный датчик зачастую используется в сложных системах освещения. Здесь нужна схема щита для подключения.
Для каждой модели характерна своя схема фотореле, которую следует учитывать для дальнейшего подключения прибора.
Еще одним вариантом подключения является способ через таймер. С помощью такого устройства можно легко запрограммировать датчик на отключение или включение регулятора. В результате включение света будет происходить через определенные интервалы времени. Это позволяет значительно сэкономить на потреблении электроэнергии.
Принцип работы
Датчик работает через специальный фотоэлемент. Он может быть различного вида:
- фоторезистор;
- фототранзистор;
- фототиристор;
- фотосимистор;
- фотодиод.
Каждый из перечисленных выше фотоэлементов по-разному реагирует на свет:
- резисторный тип — изменяет величину своего сопротивления, в результате чего и происходит включение света или его выключение;
- транзисторный тип осуществляет регулирование при облучении электрического сигнала светом.
- тиристорный тип — при облучении светом начинает взаимодействовать с постоянным током;
- симисторный тип — включает/выключает свет взаимодействуя с положительной или отрицательной составляющей гармоники. Такой фотоэлемент подает сигнал на схему датчика;
- диодный тип — в ходе облучения световым потоком он выбрасывает специальный импульс, который будет прямо пропорционален интенсивности освещения.
Этой информации будет вполне достаточно для того, чтобы приступить к подключению фотореле. С такой задачей может справиться своими руками каждый. Для этого потребуется всего лишь знать некоторые особенности процесса и алгоритм действий.
Особенности подключения
Правильное место установки
Фотореле обычно располагают недалеко от источника освещения, работу которого он должен регулировать. Это особенно актуально для уличного типа совещания.
Обратите внимание! Для того чтобы датчик работал как надо, при его подключении нужно предупредить попадание света от светильника на фотоэлемент. Лучше всего будет разместить аппарат в тени осветительного прибора.
Из корпуса датчика для уличного освещения выходят три проводника. Их нужно правильно подключить к светильнику:
- синий проводник. Он предназначен для нуля. Кроме этого к нему возможно подключение проводника от осветительного прибора;
Проводники фотореле
- коричневый проводник. Этот проводник необходим для подключения к фазе питания от сети;
- красный проводник. Через него происходит управление датчиком. Он ведет к лампе от имеющегося регулятора.
В редких случаях, что иногда характерно для системы уличного освещения, устройство датчика предполагает наличие дополнительного проводника — «земли». С его помощью можно предупредить попадание напряжения на корпус аппарата. В данной ситуации схема для подключения фотореле к уличному освещению будет стандартной. Но «земля» будет подключаться к самой лампе, минуя регулятор.
Обратите внимание! Некоторые производители изменяют маркировку проводников.
Поэтому используется принципиальная схема подключения:
- фаза всегда подсоединяется к регулятору;
Схема подключения
- ноль подключается к регулятору и идет на лампу;
- фаза идет из регулятора на лампу.
Теперь, зная, как подключается фотореле, вы видите, что все сделать своими руками будет довольно легко.
Процедура подключения
Зачастую датчики с фотоэлементом крепятся к стенам с помощью специальных кронштейнов. Они должны идти в комплекте с купленной моделью.
Чтобы правильно подключить фотореле для автоматизации уличного типа освещения, необходимо поделать следующие манипуляции:
- на корпусе прибора обычно размещается схема подключения, которую следует детально изучить;
Вариант схемы
- после того как вы ознакомились со схемой, нужно подобрать подходящее место для установки. О том, каким требованиям должно соответствовать место установки, мы говорили несколько выше;
- подключаем провода, выходящие из низа корпуса датчика к осветительному прибору;
- после этого настраиваем фотореле. Вначале устанавливаем порог срабатывания. Для этого перемещаем регулятор в нужное нам положение;
- если вы устанавливаете датчики с выносным фотоэлементом, не забудьте после монтажа подсоединить их между собой с помощью кабеля.
При наличии в конструкции устройства таймера, подключение можно провести через него. Для этого таймер следует запрограммировать на определенные временные промежутки срабатывания. Такая система очень выгодна и удобна для светлого периода дня. Благодаря данному способу подключения можно добиться довольно значительной экономии электроэнергии.
Обратите внимание! Таймер имеет собственную память, которая рассчитана на разный период (от 1 до 12 месяцев). Использование таймера позволяет значительно улучшить работу датчика, сделать ее более корректной с учетом продолжительности светового дня.
Советы по подключению
При установке и подключении фотореле необходимо знать некоторые нюансы, которые могут помочь значительно упростить вашу работу. Вот те из них, которые необходимо знать:
- при подключении в систему сразу нескольких ламп, необходимо использовать специальный контроллер. Он будет получать сигнал от регулятора датчика, управляя таким образом освещением;
Вариант подключения
- перед подключением фотореле нужно убедиться в том, что его мощностные характеристики подходят к сети. В противном случае датчик может перегореть;
- при покупке устройства обратите внимание на способ его подключения. Так вы сможете выбрать более простой способ установки;
- при монтаже прибора помните, что его минимальный предел срабатывания будет составлять 5 Люкс. Если не изменить параметров настройки, то свет станет автоматически включаться тогда, когда на улице будет еще светло;
- в систему наружного освещения уличного типа вместе с фотореле можно подключать датчики движения и элементы охранной системы.
Руководствуясь такими несложными рекомендациями, любой человек сможет своими руками заняться установкой фотореле для создания у себя дома автоматизированной системы наружного освещения со всеми вытекающими из этого преимуществами.
% PDF-1.6 % 1054 0 объект > эндобдж xref 1054 77 0000000016 00000 н. 0000003032 00000 н. 0000003172 00000 н. 0000003316 00000 н. 0000003362 00000 н. 0000003570 00000 н. 0000003953 00000 н. 0000004627 00000 н. 0000005320 00000 н. 0000005737 00000 н. 0000005985 00000 н. 0000006226 00000 н. 0000006520 00000 н. 0000006624 00000 н. 0000006727 00000 н. 0000010932 00000 п. 0000011145 00000 п. 0000011555 00000 п. 0000012575 00000 п. 0000013016 00000 п. 0000013397 00000 п. 0000013805 00000 п. 0000013949 00000 п. 0000014861 00000 п. 0000015130 00000 п. 0000015474 00000 п. 0000015614 00000 п. 0000015990 00000 н. 0000016230 00000 п. 0000016532 00000 п. 0000021094 00000 п. 0000025461 00000 п. 0000029877 00000 п. 0000034247 00000 п. 0000038774 00000 п. 0000039390 00000 н. 0000039888 00000 п. 0000043861 00000 п. 0000048189 00000 н. 0000065580 00000 п. 0000084290 00000 п. 0000086161 00000 п. 0000089328 00000 п. 0000094098 00000 п. 0000096244 00000 п. 0000098609 00000 п. 0000098698 00000 п. 0000098798 00000 п. 0000098910 00000 п. 0000099021 00000 н. 0000099112 00000 н. 0000099203 00000 п. 0000099314 00000 п. 0000102102 00000 п. 0000102438 00000 п. 0000104139 00000 п. 0000104420 00000 н. 0000105031 00000 н. 0000105135 00000 п. 0000105380 00000 п. 0000105577 00000 п. 0000106104 00000 п. 0000106214 00000 н. 0000155636 00000 н. 0000155677 00000 н. 0000156206 00000 н. 0000156317 00000 н. 0000182212 00000 н. 0000182253 00000 н. 0000182782 00000 н. 0000182892 00000 н. 0000255400 00000 н. 0000255441 00000 н. 0000255970 00000 н. 0000256079 00000 н. 0000320315 00000 н. 0000001884 00000 н. трейлер ] >> startxref 0 %% EOF 1130 0 объект > поток TC [= h! CXGL «/ = އ Bi $ SS
Как использовать реле
Реле — это переключатель с электрическим управлением.Ток, протекающий через катушку реле, создает магнитное поле, которое притягивает рычаг и изменяет контакты переключателя. Ток катушки может быть включен или выключен, поэтому реле имеют два положения переключения, и они являются переключателями с двойным ходом (переключающими).
Переключатели реле обычно помечены как COM (ПОЛЮС), NC и NO:
COM / POLE = Общий, NC и NO всегда подключаются к нему, это подвижная часть переключателя.
NC = нормально замкнутый, COM / POLE подключен к нему, когда катушка реле не намагничена.
NO = нормально разомкнутый, к нему подключен COM / POLE, когда катушка реле НАМАГНИЧЕНА, и наоборот.
Реле, показанное на рисунке, представляет собой электромагнитное или механическое реле.
Рис. Реле и его условное обозначение
В реле 5 контактов. Два контакта A и B — это два конца катушки, которые находятся внутри реле. Катушка намотана на небольшой стержень, который намагничивается всякий раз, когда через нее проходит ток.
COM / POLE всегда подключен к контакту NC (нормально подключенный).Когда ток проходит через катушки A, B, полюс подключается к нормально разомкнутому контакту реле.
Вот пример,
Прежде всего попробуйте следующую схему.
Это цепь датчика темноты.
Рис. Датчик темноты на двух транзисторах
Компоненты для этого эксперимента доступны на buildcircuit.net.
Выход этой схемы: Когда вы блокируете свет, падающий на LDR, схема включает светодиод-D1.
Теперь замените LED-D1 и R2- 330R реле и диодом.
Измените конфигурацию цепи, как показано на рисунке ниже:
Примечание: в R3 вы можете оставить любой резистор от 330R до 4,7 кОм, этот резистор предназначен для чувствительности датчика темноты.
Следующая схема также работает как датчик темноты. Когда вы блокируете свет, падающий на LDR, реле активируется, и полюс реле подключается к контакту NO, который в конечном итоге дает питание светодиодному D1.
Рис.Датчик темноты на двух транзисторах и реле.
Датчик освещенности с использованием реле и транзисторовВ этом случае конфигурация реле была изменена. Здесь NO (нормально открытый) терминал оставлен открытым. В нормальном случае светодиод D1 остается включенным. Когда свет, падающий на LDR, прерывается, полюс реле подключается к клемме NO. Следовательно, клемма NC (нормально подключенная) не получает питания, и это выключает светодиод D1-.
Рис. Датчик освещенности на двух транзисторах и реле.
Подключите к COM (полюс) и NO, если вы хотите, чтобы коммутируемая цепь была включена, когда катушка реле включена.
Подключите к COM (полюс) и NC, если вы хотите, чтобы коммутируемая цепь была включена, когда катушка реле выключена.
Все компоненты, необходимые для этого эксперимента, можно купить на buildcircuit.net.
РАБОТА С 220В
ВНИМАНИЕ: ЕСЛИ ВЫ НОВИНКА, НЕ ИГРАЙТЕ С 220 В переменного тока.ПОЗВОНИТЕ ДЛЯ ПОМОЩИ ОПЫТНОГО ЧЕЛОВЕКА.
Рис. Схема датчика темноты для светильников с питанием 220В.
Реле можно использовать для включения света, работающего от сети переменного тока 220В. Лампа с питанием от сети переменного тока должна быть подключена к реле, как показано на рисунке выше.
Рис. Соединительные провода на реле
На следующем видео показан готовый прототип.
ЗАЩИТНЫЙ ДИОД РЕЛЕ
Рис.Защитный диод в цепи
Транзисторы и ИС должны быть защищены от кратковременного высокого напряжения, возникающего при отключении катушки реле. На схеме показано, как сигнальный диод (например, 1N4148 или 1N4001 или 1N4007) подключается «назад» через катушку реле для обеспечения этой защиты.
Ток, протекающий через катушку реле, создает магнитное поле, которое внезапно схлопывается при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке реле, которое с большой вероятностью может повредить транзисторы и ИС.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это препятствует тому, чтобы наведенное напряжение стало достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.
ОБЩИЕ ХАРАКТЕРИСТИКИ РЕЛЕ
06VDC — означает, что напряжение на катушке реле должно быть 6V-DC.
50/60 Гц — реле может работать при 50/60 Гц переменного тока.
7A, 240VAC — Максимальные характеристики переменного тока и напряжения переменного тока, которые могут проходить через нормально замкнутые, нормально разомкнутые и полюсные контакты / клеммы реле.
Еще один пример (обновление 19.3.2014)
05VDC — Это означает, что вам нужно 5V для активации реле. Другими словами, это означает, что напряжение на катушке реле должно быть 5 В постоянного тока.
10A 250VAC 10A 125VAC — Максимальный переменный ток и напряжение переменного тока, которые могут пропускаться через NC, NO и полюсные контакты / клеммы реле. В некоторых странах есть стандарт питания 220 В переменного тока, поэтому он работает и в этих странах.
10A 30VDC 10A 28VDC- Максимальный постоянный ток и напряжение постоянного тока, которые могут пропускаться через NC, NO и полюсные контакты / клеммы реле.
Советы:
— Если вы используете реле 5-6 В, используйте источник питания 6 В.
— Если вы используете реле на 9 В, используйте источник питания 12 В.
Купите компоненты для всех экспериментов, опубликованных на этой странице buildcircuit.net.
Почему на этой схеме реле три контакта?
Прежде чем я углублюсь в реле, позвольте мне дать вам общее представление о переключателях.
Существует множество различных типов переключателей с ручным управлением, и все они используются для разных целей.Вот несколько, с их именами и некоторой номенклатурой:
смоделировать эту схему — Схема создана с помощью CircuitLab
Число «полюсов» относится к количеству отдельных переключателей, которые присутствуют в «пакете». Каждый «столб» будет активирован одним и тем же действием «нажатия».
Количество «бросков» говорит вам, сколько различных путей подключения, которые каждый отдельный полюс может создать в своем «нажатом» или «не нажатом» состоянии. Например, у переключателя SPDT есть два возможных «пути»: один соединяет COM с NO (когда переключатель нажат), другой соединяет COM с NC (когда переключатель отпускается).
Термины NO и NC говорят вам, какой путь от COM будет «замкнут», когда переключатель находится в «нажатом» или «не нажатом» состоянии. Я надеюсь, очевидно, что «NO», что означает «нормально открытый», — это путь, который остается открытым (отключенным от COM), когда переключатель находится в положении , а не .
Преимущество двухпозиционных переключателей заключается в том, что вы можете управлять двумя путями тока. В следующей схеме есть две лампы: красная и зеленая. Обычно горит красная лампа, но при нажатии переключателя путь от COM к NC прерывается, а путь от COM к NO замыкается, в результате чего красная лампа гаснет, а вместо этого загорается зеленая лампа:
смоделировать эту схему
Такое поведение невозможно (по крайней мере, без множества дополнительных схем) с однонаправленным переключателем.
Вы можете найти реле со всеми видами переключателей в них. Тот, который вы нам показали в своем вопросе, содержит переключатель SPDT. Вот он со всеми добавленными именами подключений:
Вот схема, использующая это реле для управления двумя лампами точно так же, как ручные переключатели в предыдущей схеме:
смоделировать эту схему
Вы можете управлять лампами или любыми другими устройствами, включая и выключая ток в катушке, вместо того, чтобы вручную нажимать переключатель.
Когда ток течет через катушку, переключатель «нажимается» магнитным полем, и путь тока через зеленую лампу закрывается, в результате чего эта лампа загорается. Когда вы деактивируете катушку, переключатель возвращается в свое «не нажатое» положение, и вместо этого загорается красная лампа.
Интересно отметить, что схема с переключателем и лампами полностью электрически изолирована (отключена) от катушки и всего, к чему она подключена. Это очень полезное свойство реле, потому что оно позволяет вам управлять опасными высоковольтными или сильноточными вещами, не подвергая эти условия каким-либо чувствительным схемам на стороне катушки, отвечающим за управление низким напряжением и током, необходимым для катушки.
Как управлять током катушки зависит от вас. Вы можете использовать транзистор и Arduino для включения и выключения тока катушки электронным способом, а не вручную. Возможности безграничны.
relay_shield_for_arduino_v2.1__sku_dfr0144_-DFRobot
- ДОМ
- СООБЩЕСТВО
- ФОРУМ
- БЛОГ
- ОБРАЗОВАНИЕ
- Контроллер
- DFR0010 Arduino Nano 328
- DFR0136 Сервоконтроллер Flyduino-A 12
- DFR0225 Romeo V2-Все в одном контроллере R3
- Arduino_Common_Controller_Selection_Guide
- DFR0182 Беспроводной геймпад V2.0
- DFR0100 Комплект для начинающих DFRduino для Arduino V3
- DFR0267 Блуно
- DFR0282 Жук
- DFR0283 Мечтатель клен V1.0
- DFR0296 Блуно Нано
- DFR0302 MiniQ 2WD Plus
- DFR0304 Беспроводной геймпад BLE V2
- DFR0305 RoMeo BLE
- DFR0351 Romeo BLE mini V2.0
- DFR0306 Блуно Мега 1280
- DFR0321 Узел Wido-WIFI IoT
- DFR0323 Блуно Мега 2560
- DFR0329 Блуно М3
- DFR0339 Жук Блуно
- DFR0343 Контроллер с низким энергопотреблением UHex
- DFR0355 SIM808 с материнской платой Leonardo
- DFR0392 DFRduino M0 материнская плата, совместимая с Arduino
- DFR0398 Romeo BLE Quad Robot Controller
- DFR0416 Bluno M0 Материнская плата
- DFR0575 Жук ESP32
- DFR0133 X-Доска
- DFR0162 X-Board V2
- DFR0428 3.5-дюймовый сенсорный TFT-экран для Raspberry Pi
- DFR0494 Raspberry Pi ШАПКА ИБП
- DFR0514 DFR0603 IIC 16X2 RGB LCD KeyPad HAT V1.0
- DFR0524 5.5 HDMI OLED-дисплей с емкостным сенсорным экраном V2.0
- DFR0550 5-дюймовый TFT-дисплей с сенсорным экраном V1.0
- DFR0591 модуль дисплея raspberry pi e-ink V1.0
- DFR0592 Драйвер двигателя постоянного тока HAT
- DFR0604 HAT расширения ввода-вывода для Pi zero V1.0
- DFR0566 Шляпа расширения ввода-вывода для Raspberry Pi
- DFR0528 Шляпа ИБП для Raspberry Pi Zero
- DFR0331 Romeo для контроллера Edison
- DFR0453 DFRobot CurieNano — мини-плата Genuino Arduino 101
- TEL0110 CurieCore Intel® Curie Neuron Module
- DFR0478 Микроконтроллер IOT FireBeetle ESP32 (V3.0) с поддержкой Wi-Fi и Bluetooth
- DFR0483 FireBeetle Covers-Gravity I O Expansion Shield
- FireBeetle Covers-24 × 8 светодиодная матрица
- TEL0121 FireBeetle Covers-LoRa Radio 433 МГц
- TEL0122 FireBeetle Covers-LoRa Radio 915 МГц
- TEL0125 FireBeetle охватывает LoRa Radio 868MHz
- DFR0489 FireBeetle ESP8266 Микроконтроллер IOT
- DFR0492 FireBeetle Board-328P с BLE4.1
- DFR0498 FireBeetle Covers-Camera & Audio Media Board
- DFR0507 FireBeetle Covers-OLED12864 Дисплей
- DFR0508 FireBeetle Covers-Двигатель постоянного тока и шаговый драйвер
- DFR0511 FireBeetle Covers-ePaper Черно-белый дисплейный модуль
- DFR0531 FireBeetle Covers-ePaper Черно-белый и красный дисплейный модуль
- DFR0536 Плата расширения геймпада с микробитами
- DFR0548 Плата расширения микробитового драйвера
- ROB0148 micro: Maqueen для micro: bit
- ROB0150 Microbit Круглая плата расширения для светодиодов RGB
- MBT0005 Micro IO-BOX
- SEN0159 Датчик CO2
- DFR0049 DFRobot Датчик газа
- TOY0058 Датчик атмосферного давления
- SEN0220 Инфракрасный датчик CO2 0-50000ppm
- SEN0219 Гравитационный аналоговый инфракрасный датчик CO2 для Arduino
- SEN0226 Датчик барометра Gravity I2C BMP280
- SEN0231 Датчик гравитации HCHO
- SEN0251 Gravity BMP280 Датчики атмосферного давления
- SEN0132 Датчик угарного газа MQ7
- SEN0032 Трехосный акселерометр — ADXL345
- DFR0143 Трехосевой акселерометр MMA7361
- Трехосный акселерометр серии FXLN83XX
- SEN0072 CMPS09 — Магнитный компас с компенсацией наклона
- SEN0073 9 степеней свободы — бритва IMU
- DFR0188 Flymaple V1.1
- SEN0224 Трехосевой акселерометр Gravity I2C — LIS2DH
- SEN0140 Датчик IMU с 10 степенями свободы, версия 2.0
- SEN0250 Gravity BMI160 6-осевой инерционный датчик движения
- SEN0253 Gravity BNO055 + BMP280 интеллектуальный 10DOF AHRS
- SEN0001 URM37 V5.0 Ультразвуковой датчик
- SEN0002 URM04 V2.0
- SEN0004 SRF01 Ультразвуковой датчик
- SEN0005 SRF02 Ультразвуковой датчик
- SEN0006 SRF05 Ультразвуковой датчик
- SEN0007 SRF08 Ультразвуковой датчик
- SEN0008 SRF10 Ультразвуковой датчик
- SEN0149 URM06-RS485 Ультразвуковой
- SEN0150 URM06-UART Ультразвуковой
- SEN0151 URM06-PULSE Ультразвуковой
- SEN0152 URM06-ANALOG Ультразвуковой
- SEN0153 Ультразвуковой датчик URM07-UART
- SEN0246 URM08-RS485 Водонепроницаемый гидролокатор-дальномер
- SEN0304 Ультразвуковой датчик URM09 (Gravity-I2C) (V1.0)
- SEN0304 Ультразвуковой датчик URM09 (Gravity-I2C) (V1.0)
- SEN0300 Водонепроницаемый ультразвуковой датчик ULS
- SEN0301 Водонепроницаемый ультразвуковой датчик ULA
- SEN0307 URM09 Аналог ультразвукового датчика силы тяжести
- SEN0311 A02YYUW Водонепроницаемый ультразвуковой датчик
- SEN0312 ME007YS Водонепроницаемый ультразвуковой датчик
- SEN0313 A01NYUB Водонепроницаемый ультразвуковой датчик
- DFR0066 SHT1x Датчик влажности и температуры
- DFR0067 DHT11 Датчик температуры и влажности
- SEN0137 DHT22 Модуль температуры и влажности
- DFR0023 Линейный датчик температуры DFRobot LM35
- DFR0024 Gravity DS18B20 Датчик температуры, совместимый с Arduino V2
- DFR0024 Gravity DS18B20 Датчик температуры, совместимый с Arduino V2
- SEN0114 Датчик влажности
- Датчик температуры TOY0045 TMP100
- TOY0054 SI7021 Датчик температуры и влажности
- SEN0206 Датчик инфракрасного термометра MLX
- SEN0227 SHT20 Водонепроницаемый датчик температуры и влажности I2C
- SEN0236 Gravity I2C BME280 Датчик окружающей среды Температура, влажность, барометр
- SEN0248 Gravity I2C BME680 Датчик окружающей среды VOC, температура, влажность, барометр
- DFR0558 Цифровой высокотемпературный датчик силы тяжести типа К
- SEN0308 Водонепроницаемый емкостный датчик влажности почвы
- SEN0019 Регулируемый переключатель инфракрасного датчика
- SEN0042 DFRobot Инфракрасный датчик прорыва
- SEN0143 SHARP GP2Y0A41SK0F ИК-датчик рейнджера 4-30 см
- SEN0013 Sharp GP2Y0A02YK ИК-датчик рейнджера 150 см
- SEN0014 Sharp GP2Y0A21 Датчик расстояния 10-80 см
- SEN0085 Sharp GP2Y0A710K Датчик расстояния 100-550 см
- Модуль цифрового ИК-приемника DFR0094
- DFR0095 Модуль цифрового ИК-передатчика
- SEN0018 Цифровой инфракрасный датчик движения
- DFR0107 ИК-комплект
- SEN0264 TS01 ИК-датчик температуры (4-20 мА)
- SEN0169 Аналоговый pH-метр Pro
- DFR0300-H Gravity: аналоговый датчик электропроводности (K = 10)
- DFR0300 Гравитационный аналоговый датчик электропроводности V2 K = 1
- SEN0165 Аналоговый измеритель ОВП
- SEN0161-V2 Комплект гравитационного аналогового датчика pH V2
- SEN0161 PH метр
- SEN0237 Гравитационный аналоговый датчик растворенного кислорода
- SEN0204 Бесконтактный датчик уровня жидкости XKC-Y25-T12V
- SEN0205 Датчик уровня жидкости-FS-IR02
- SEN0244 Gravity Analog TDS Sensor Meter для Arduino
- SEN0249 Комплект измерителя pH с аналоговым наконечником копья силы тяжести для применения в почве и пищевых продуктах
- SEN0121 Датчик пара
- SEN0097 Датчик освещенности
- DFR0026 Датчик внешней освещенности DFRobot
- TOY0044 УФ-датчик
- SEN0172 LX1972 датчик внешней освещенности
- SEN0043 TEMT6000 датчик внешней освещенности
- SEN0175 УФ-датчик v1.0-ML8511
- SEN0228 Gravity I2C VEML7700 Датчик внешней освещенности
- SEN0101 Датчик цвета TCS3200
- DFR0022 Датчик оттенков серого DFRobot
- Датчик отслеживания линии SEN0017 для Arduino V4
- SEN0147 Интеллектуальный датчик оттенков серого
- SEN0212 TCS34725 Датчик цвета I2C для Arduino
- SEN0245 Gravity VL53L0X Лазерный дальномер ToF
- SEN0259 TF Mini LiDAR ToF Laser Range Sensor
- SEN0214 Датчик тока 20А
- SEN0262 Гравитационный аналоговый преобразователь тока в напряжение для приложений 4 ~ 20 мА
- SEN0291 Gravity: Цифровой ваттметр I2C
- DFR0027 Цифровой датчик вибрации DFRobot V2
- DFR0028 DFRobot Датчик наклона
- DFR0029 Цифровая кнопка DFRobot
- DFR0030 DFRobot емкостный датчик касания
- Модуль цифрового зуммера DFR0032
- DFR0033 Цифровой магнитный датчик
- DFR0034 Аналоговый звуковой датчик
- SEN0038 Колесные энкодеры для DFRobot 3PA и 4WD Rovers
- DFR0051 Аналоговый делитель напряжения
- DFR0052 Аналоговый пьезодисковый датчик вибрации
- DFR0076 Датчик пламени
- DFR0053 Аналоговый датчик положения ползуна
- DFR0054 Аналоговый датчик вращения V1
- DFR0058 Аналоговый датчик вращения V2
- Модуль джойстика DFR0061 для Arduino
- DFR0075 AD Клавиатурный модуль
- Модуль вентилятора DFR0332
- SEN0177 PM2.5 лазерный датчик пыли
- Модуль датчика веса SEN0160
- SEN0170 Тип напряжения датчика скорости ветра 0-5 В
- TOY0048 Высокоточный двухосевой датчик инклинометра, совместимый с Arduino Gadgeteer
- SEN0187 RGB и датчик жестов
- SEN0186 Метеостанция с анемометром Флюгер Дождь ведро
- SEN0192 Датчик микроволн
- SEN0185 датчик Холла
- FIT0449 DFRobot Speaker v1.0
- Датчик сердечного ритма SEN0203
- DFR0423 Самоблокирующийся переключатель
- SEN0213 Датчик монитора сердечного ритма
- SEN0221 Датчик угла Холла силы тяжести
- Датчик переключателя проводимости SEN0223
- SEN0230 Инкрементальный фотоэлектрический датчик угла поворота — 400P R
- SEN0235 Модуль поворотного энкодера EC11
- SEN0240 Аналоговый датчик ЭМГ от OYMotion
- SEN0232 Гравитационный аналоговый измеритель уровня звука
- SEN0233 Монитор качества воздуха PM 2.5, формальдегид, датчик температуры и влажности
- DFR0515 FireBeetle Covers-OSD Модуль наложения символов
- SEN0257 Датчик гравитационного давления воды
- SEN0289 Gravity: Цифровой датчик встряхивания
- SEN0290 Gravity: Датчик молнии
- DFR0271 GMR Плата
- ROB0003 Pirate 4WD Мобильная платформа
- Мобильная платформа ROB0005 Turtle 2WD
- ROB0025 NEW A4WD Мобильный робот с кодировщиком
- ROB0050 4WD MiniQ Полный комплект
- ROB0111 4WD MiniQ Cherokey
- ROB0036 Комплект роботизированной руки с 6 степенями свободы
- Комплект наклонно-поворотного устройства FIT0045 DF05BB
- ROB0102 Мобильная платформа Cherokey 4WD
- ROB0117 Базовый комплект для Cherokey 4WD
- ROB0022 4WD Мобильная платформа
- ROB0118 Базовый комплект для Turtle 2WD
- Робот-комплект ROB0080 Hexapod
- ROB0112 Мобильная платформа Devastator Tank
- ROB0114 Мобильная платформа Devastator Tank
- ROB0124 Мобильная платформа HCR с всенаправленными колесами
- ROB0128 Devastator Tank Мобильная платформа Металлический мотор-редуктор постоянного тока
- ROB0137 Explorer MAX Робот
- ROB0139 Робот FlameWheel
- DFR0270 Accessory Shield для Arduino
- DFR0019 Щит для прототипирования для Arduino
- DFR0265 IO Expansion Shield для Arduino V7
- DFR0210 Пчелиный щит
- DFR0165 Mega IO Expansion Shield V2.3
- DFR0312 Плата расширения Raspberry Pi GPIO
- DFR0311 Raspberry Pi встречает Arduino Shield
- DFR0327 Arduino Shield для Raspberry Pi 2B и 3B
- DFR0371 Экран расширения ввода-вывода для Bluno M3
- DFR0356 Щит Bluno Beetle
- DFR0412 Gravity IO Expansion Shield для DFRduino M0
- DFR0375 Cookie I O Expansion Shield V2
- DFR0334 GPIO Shield для Arduino V1.0
- DFR0502 Gravity IO Expansion & Motor Driver Shield V1.1
- DFR0518 Micro Mate — мини-плата расширения для микробита
- DFR0578 Gravity I O Expansion Shield для OpenMV Cam M7
- DFR0577 Gravity I O Expansion Shield для Pyboard
- DFR0626 MCP23017 Модуль расширения с IIC на 16 цифровых IO
- DFR0287 LCD12864 Экран
- DFR0009 Экран ЖК-клавиатуры для Arduino
- DFR0063 I2C TWI LCD1602 Модуль, совместимый с Gadgeteer
- Модуль DFR0154 I2C TWI LCD2004, совместимый с Arduino Gadgeteer
- Светодиодная матрица DFR0202 RGB
- DFR0090 3-проводной светодиодный модуль
- TOY0005 OLED 2828 модуль цветного дисплея.Совместимость с NET Gadgeteer
- Модуль дисплея TOY0006 OLED 9664 RGB
- Модуль дисплея TOY0007 OLED 2864
- Модуль дисплея FIT0328 2.7 OLED 12864
- DFR0091 3-проводной последовательный ЖК-модуль, совместимый с Arduino
- DFR0347 2.8 TFT Touch Shield с 4 МБ флэш-памяти для Arduino и mbed
- DFR0348 3.5 TFT Touch Shield с 4 МБ флэш-памяти для Arduino и mbed
- DFR0374 Экран LCD клавиатуры V2.0
- DFR0382 Экран со светодиодной клавиатурой V1.0
- DFR0387 TELEMATICS 3.5 TFT сенсорный ЖК-экран
- DFR0459 Светодиодная матрица RGB 8×8
- DFR0460 Светодиодная матрица RGB 64×32 — шаг 4 мм / Гибкая светодиодная матрица 64×32 — Шаг 4 мм / Гибкая светодиодная матрица 64×32 — Шаг 5 мм
- DFR0461 Гибкая светодиодная матрица 8×8 RGB Gravity
- DFR0462 Гибкая светодиодная матрица 8×32 RGB Gravity
- DFR0463 Gravity Гибкая светодиодная матрица 16×16 RGB
- DFR0471 Светодиодная матрица RGB 32×16 — шаг 6 мм
- DFR0472 Светодиодная матрица RGB 32×32 — шаг 4 мм
- DFR0464 Gravity I2C 16×2 ЖК-дисплей Arduino с подсветкой RGB
- DFR0499 Светодиодная матрица RGB 64×64 — шаг 3 мм
- DFR0506 7-дюймовый дисплей HDMI с емкостным сенсорным экраном
- DFR0555 \ DF0556 \ DFR0557 Gravity I2C LCD1602 Модуль ЖК-дисплея Arduino
- DFR0529 2.2-дюймовый ЖК-дисплей TFT V1.0 (интерфейс SPI)
- DFR0605 Gravity: Цифровой светодиодный модуль RGB
- FIT0352 Цифровая светодиодная водонепроницаемая лента с RGB-подсветкой 60LED м * 3 м
- DFR0645-G DFR0645-R 4-цифровой светодиодный сегментный модуль дисплея
- Артикул DFR0646-G DFR0646-R 8-цифровой светодиодный сегментный модуль дисплея
- DFR0597 Гибкая светодиодная матрица RGB 7×71
- DFR0231 Модуль NFC для Arduino
- Модуль радиоданных TEL0005 APC220
- TEL0023 BLUETOOH BEE
- TEL0026 DF-BluetoothV3 Bluetooth-модуль
- Модуль беспроводного программирования TEL0037 для Arduino
- TEL0044 DFRduino GPS Shield-LEA-5H
- TEL0047 WiFi Shield V2.1 для Arduino
- TEL0051 GPS GPRS GSM модуль V2.0
- TEL0067 Wi-Fi Bee V1.0
- TEL0073 BLE-Link
- TEL0075 RF Shield 315 МГц
- TEL0078 WIFI Shield V3 PCB Антенна
- TEL0079 WIFI Shield V3 RPSMA
- TEL0084 BLEmicro
- TEL0086 DF-маяк EVB
- TEL0087 USBBLE-LINK Bluno Адаптер для беспроводного программирования
- TEL0080 UHF RFID МОДУЛЬ-USB
- TEL0081 УВЧ RFID МОДУЛЬ-RS485
- TEL0082 UHF RFID МОДУЛЬ-UART
- TEL0083-A GPS-приемник для Arduino Model A
- TEL0092 WiFi Bee-ESP8266 Wirelss модуль
- Модуль GPS TEL0094 с корпусом
- TEL0097 SIM808 GPS GPRS GSM Shield
- DFR0342 W5500 Ethernet с материнской платой POE
- DFR0015 Xbee Shield для Arduino без Xbee
- TEL0107 WiFiBee-MT7681 Беспроводное программирование Arduino WiFi
- TEL0089 SIM800C GSM GPRS Shield V2.0
- Модуль приемника RF TEL0112 Gravity 315MHZ
- TEL0113 Gravity UART A6 GSM и GPRS модуль
- TEL0118 Gravity UART OBLOQ IoT-модуль
- Модуль TEL0120 DFRobot BLE4.1
- Bluetooth-адаптер TEL0002
- Модуль аудиоприемника Bluetooth TEL0108
- TEL0124 SIM7600CE-T 4G (LTE) Shield V1.0
- DFR0505 SIM7000C Arduino NB-IoT LTE GPRS Expansion Shield
- DFR0013 IIC в GPIO Shield V2.0
- Плата привода двигателя датчика DFR0057 — Версия 2.2
- DFR0062 Адаптер WiiChuck
- DFR0233 Узел датчика RS485 V1.0
- DFR0259 Arduino RS485 щит
- DFR0370 Экран CAN-BUS V2
- DFR0627 IIC для двойного модуля UART
- TEL0070 Multi USB RS232 RS485 TTL преобразователь
- DFR0064 386AMP модуль аудиоусилителя
- DFR0273 Экран синтеза речи
- DFR0299 DFPlayer Mini
- TOY0008 DFRduino Плеер MP3
- SEN0197 Диктофон-ISD1820
- DFR0420 Аудиозащитный экран для DFRduino M0
- DFR0534 Голосовой модуль
- SD2403 Модуль часов реального времени SKU TOY0020
- TOY0021 SD2405 Модуль часов реального времени
- DFR0151 Модуль Gravity I2C DS1307 RTC
- DFR0469 Модуль Gravity I2C SD2405 RTC
- DFR0316 MCP3424 18-битный канал АЦП-4 с усилителем с программируемым усилением
- DFR0552 Gravity 12-битный модуль I2C DAC
- DFR0553 Gravity I2C ADS1115 16-битный модуль АЦП, совместимый с Arduino и Raspberry Pi
- DFR0117 Модуль хранения данных Gravity I2C EEPROM
- Модуль SD DFR0071
- Плата привода двигателя датчика DFR0057 — Версия 2.2
- DFR0360 XSP — Программист Arduino
- DFR0411 Двигатель постоянного тока Gravity 130
- DFR0438 Яркий светодиодный модуль
- DFR0439 Светодиодные гирлянды красочные
- DFR0440 Модуль микровибрации
- DFR0448 Светодиодные гирлянды, теплый белый цвет
- Встроенный термопринтер DFR0503 — последовательный TTL
- DFR0504 Гравитационный изолятор аналогового сигнала
- DFR0520 Двойной цифровой потенциометр 100K
- DFR0565 Гравитационный цифровой изолятор сигналов
- DFR0563 Гравитация 3.Датчик уровня топлива литиевой батареи 7V
- DFR0576 Гравитационный цифровой мультиплексор I2C с 1 по 8
- DFR0117 Модуль хранения данных Gravity I2C EEPROM
- DRI0001 Моторный щит Arduino L293
- DRI0002 MD1.3 2A Двухмоторный контроллер
- DRI0009 Моторный щит Arduino L298N
- DRI0021 Драйвер двигателя постоянного тока Veyron 2x25A Brush
- DRI0017 2A Моторный щит для Arduino Twin
- Драйвер двигателя постоянного тока DRI0018 2x15A Lite
- Микродвигатель постоянного тока FIT0450 с энкодером-SJ01
- FIT0458 Микродвигатель постоянного тока с энкодером-SJ02
- DFR0399 Микро-металлический мотор-редуктор постоянного тока 75 1 Вт Драйвер
- DRI0039 Quad Motor Driver Shield для Arduino
- DRI0040 Двойной 1.Драйвер двигателя 5A — HR8833
- DRI0044 2×1.2A Драйвер двигателя постоянного тока TB6612FNG
- Драйвер двигателя постоянного тока DFR0513 PPM 2x3A
- DFR0523 Гравитационный цифровой перистальтический насос
- DRI0027 Digital Servo Shield для Arduino
- DRI0029 Сервопривод Veyron, 24 канала
- SER0044 DSS-M15S 270 ° 15KG Металлический сервопривод DF с аналоговой обратной связью
- DRI0023 Экран шагового двигателя для Arduino DRV8825
- DRI0035 TMC260 Щиток драйвера шагового двигателя
- DFR0105 Силовой щит
- DFR0205 Силовой модуль
- DFR0457 Контроллер мощности Gravity MOSFET
- DFR0564 Зарядное устройство USB для 7.Литий-полимерная батарея 4 В
- DFR0535 Менеджер солнечной энергии
- DFR0559 Солнечная система управления мощностью 5 В для подсолнечника
- DFR0559 Менеджер солнечной энергии 5 В
- DFR0580 Solar Power Manager для свинцово-кислотных аккумуляторов 12 В
- DFR0222 Реле X-Board
- Релейный модуль DFR0017, совместимый с Arduino
- DFR0289 Релейный контроллер RLY-8-POE
- DFR0290 RLY-8-RS485 8-релейный контроллер
- DFR0144 Релейный экран для Arduino V2.1
- DFR0473 Gravity Digital Relay Module Совместимость с Arduino и Raspberry Pi
- KIT0003 EcoDuino — Комплект для автомобильных заводов
- KIT0071 MiniQ Discovery Kit
- KIT0098 Пакет компонентов подключаемого модуля Breadboard
- Артикул DFR0748 Цветок Китти
- SEN0305 Гравитация: HUSKYLENS — простой в использовании датчик машинного зрения AI
- Подключение датчика к Raspberry Pi
- DFR0677 ШЛЯПА ONPOWER UPS для Raspberry Pi
Solu Переключатель датчика освещенности 12 В постоянного тока Модуль реле светочувствительного сопротивления с кабелем // Модуль цепи автоматического управления светом Стабилизированной автомобильной светодиодной фары 12 В постоянного тока // Модуль реле датчика фотоэлектрического переключателя 12 В постоянного тока 50 мм x 25 мм с 2 кабелями —
Стиль: Модуль реле задержки 12 В с кабелем
О нас (Solu), профессиональная фабрика печатных плат, добро пожаловать в наш магазин для большего выбора по лучшей цене.Мы стремимся к тому, чтобы вы остались довольны нашим сервисом, а не только нашими товарами. По любой причине вы в любое время не удовлетворены нашим продуктом, просто свяжитесь со службой поддержки для обмена или возврата. мы ответим вам на любой вопрос, который вы зададите в течение 24 часов
Технические характеристики:
Рабочее напряжение: 12 В постоянного тока
Рабочий ток:> 100 мА
Формы выхода: 250 В переменного тока 10 А или 30 В постоянного тока 10 А (могут использоваться в диапазоне ниже 10А тока)
12В мощность специально используется для реле.Встроенные транзисторы регулятора 78L05 используются для датчика и компаратора, чтобы сделать продукт более стабильным и надежным;
Встроенное реле с оптоизолятором, может эффективно защитить чип, чтобы обеспечить более надежную работу продукта.
С четырьмя отверстиями для крепежных болтов для легкой установки
Допускает широкий компаратор LM393 напряжения
Инструкция:
1 Модуль светочувствительного датчика сопротивления очень чувствителен к свету окружающей среды. Обычно он используется для определения яркости окружающего света.
2 Когда яркость окружающего света ниже установленного порогового значения, реле притягивается, чтобы закрыть, и будут подключены общий порт и нормально открытый порт; в то время как яркость окружающего света превышает установленное пороговое значение, реле отключается, и общий порт и порт нормального закрытия будут подключены.
3 Общий порт, нормально открытый и нормально закрытый порт эквивалентны переключателю с двойным управлением. Когда в катушке реле есть электричество, общий порт и нормально открытый порт подключаются, в то время как в катушке реле нет электричества, общий порт и нормально закрытый порт подключаются.
В коплект входит:
* 1 модуль светочувствительного датчика
1 удлинительный кабель
Использование твердотельного реле
Узнайте, как легко подключить твердотельное реле
Твердотельное реле (SSR) — альтернатива использованию классического переключателя, когда вы хотите включить или выключить цепь. SSR запускается внешним напряжением, приложенным к его клемме управления. У него нет движущихся частей, поэтому он может работать намного быстрее и дольше, чем традиционный переключатель.Если он использует инфракрасный свет в качестве контакта; две стороны реле фотосвязаны.Зачем использовать реле вместо переключателя?
Основные факторы — удобство, безопасность и стоимость. Реле меньше и дешевле переключателей. С переключателем вам также придется прокладывать более толстые провода (достаточные для работы с током 30-40 ампер), потому что для него требуется большее напряжение, чем для реле. Думайте о реле как о пульте дистанционного управления, оно обеспечивает безопасность, увеличивая расстояние до источника питания.Провода SSR меньше и большего сечения, чем у переключателя.SSR также быстрее, меньше по размеру и имеют более длительный срок службы, чем механическое реле. Они помогают повысить безопасность, поскольку вы имеете дело с меньшим напряжением и силой тока, давая вам меньшее напряжение / силу тока, контролируя более высокое напряжение / силу тока. Для гораздо более высоких напряжений SSR — отличная альтернатива, когда обычный переключатель не может использоваться из-за сгорания под действием тока.
На схеме ниже показано, как подключить твердотельное реле. Обратите внимание, что схема относится к твердотельному реле (SSR) типа DC / DC.
Твердотельное реле (DC / DC):
Подсоедините положительную клемму (R) к кнопочному переключателю.Подсоедините отрицательную клемму (R) к отрицательной клемме аккумулятора 1.
Подсоедините положительную клемму (L) к положительной клемме аккумулятора 2.
Подсоедините отрицательную клемму (L) к положительной клемме нагрузки.
Батарея 1:
Обратите внимание, что первая батарея использовалась в качестве изолятора.
Подсоедините отрицательную клемму аккумулятора 1 к отрицательной клемме SSR (R).
Подсоедините положительный полюс аккумуляторной батареи 1 к кнопочному переключателю.
Кнопочный переключатель:
Подключите одну клемму к положительной клемме (R) SSR.
Подсоедините вторую клемму к плюсовой клемме АКБ 1.
Нагрузка:
Подключите положительную клемму нагрузки к отрицательной клемме (L) SSR.
Подключите отрицательную клемму нагрузки к отрицательной клемме аккумулятора 2.
Аккумулятор 2:
Подключите положительный вывод аккумулятора 2 к положительному выводу на выходе.
Подключите отрицательную клемму аккумулятора 2 к отрицательной клемме нагрузки.
Если у вас есть вопросы, обращайтесь в техническую группу Jameco по адресу [электронная почта защищена]. Схема простого переключателя реле
Основное использование реле было замечено в истории передачи и получения информации, которая называлась кодом Морзе, где входные сигналы были либо 1, либо 0, эти изменения сигналов были механическими. отмеченный в терминах включения и выключения лампочки или звукового сигнала, это означает, что эти импульсы единиц и нулей преобразуются в механические включения и выключения с помощью электромагнитов.Позже это было импровизировано и использовалось в различных приложениях. Давайте посмотрим, как этот электромагнит действует как переключатель и почему он назван РЕЛЕ.
Что такое реле?Реле — это переключатель с электромеханическим управлением, однако в реле также используются другие принципы работы, такие как твердотельные реле. Реле обычно используется, когда требуется управлять цепью отдельным сигналом малой мощности или когда несколько цепей должны управляться одним сигналом.Они подразделяются на многие типы, стандартное и обычно используемое реле состоит из электромагнитов, которые обычно используются в качестве переключателя. Словарь говорит, что реле означает акт передачи чего-либо от одной вещи к другой, то же значение может быть применено к этому устройству, потому что сигнал, полученный с одной стороны устройства, управляет операцией переключения на другой стороне. Таким образом, реле — это переключатель, который управляет цепями (размыканием и замыканием) электромеханически. Основная операция этого устройства заключается в включении или выключении контакта с помощью сигнала без участия человека.Он в основном используется для управления цепью высокой мощности с использованием сигнала низкой мощности. Обычно сигнал постоянного тока используется для управления цепью, которая управляется высоким напряжением, например, управление бытовой техникой переменного тока с помощью сигналов постоянного тока от микроконтроллеров.
Итак, теперь мы понимаем, что такое реле и почему они используются в схемах. Далее мы рассмотрим простой пример, в котором мы будем включать лампу переменного тока (CFL) с помощью релейного переключателя. В этой схеме реле мы используем кнопку для включения реле 5 В, которое, в свою очередь, замыкает вторую цепь и включает лампу.
Необходимый материал- Реле 5В
- Патрон лампы
- CFL
- Кнопка включения / выключения
- Перфорированная плита
- аккумулятор 9В
- Электропитание переменного тока
В приведенной выше схеме реле 5 В питается от батареи 9 В. Переключатель ВКЛ / ВЫКЛ добавлен для переключения реле.В исходном состоянии, когда переключатель разомкнут, ток через катушку не протекает, поэтому общий порт реле подключен к нормально разомкнутому контакту, поэтому ЛАМПА остается выключенной.
Когда переключатель замкнут, ток начинает течь через катушку, и, согласно концепции электромагнитной индукции, в катушке создается магнитное поле, которое притягивает подвижный якорь, и Com-порт подключается к контакту NC (нормально замкнутый) реле. . Следовательно, ЛАМПА включается.
Итак, с помощью простого механизма, управляемого напряжением 9 В, мы можем управлять питанием переменного тока напряжением 230 В.
.